การประชุมวิชาการคอนกรีตประจำปีครั้งที่ 10 ANNUAL CONCRETE CONFERENCE

20-22 ตุลาคม 2557
don โรงแรมดุสิต ไอแอกส์แอนด์ รีสอร์ท
อำเภอเมือง จังหวัดเชียงราย

จัดโดย สมาคมคอนกรีตแห่งประเทศไทย ร่วมกับ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี และ ศูนย์วิจัยและพัฒนาโครงสร้างมูลฐานอย่างยั่งยืน มหาวิทยาลัยขอนแก่น
<table>
<thead>
<tr>
<th>ศ.ดร.สมนึก</th>
<th>ตั้งศิริสกุล</th>
<th>สถาบันเทคโนโลยีอิเปนท์คอมพิวเตอร์</th>
</tr>
</thead>
<tbody>
<tr>
<td>ดร.เฉลิมชัย</td>
<td>วิภาคธิรภัทร์</td>
<td>ศูนย์วิจัยเทคโนโลยีการก่อสร้างและบำรุงรักษา (CONTEC)</td>
</tr>
<tr>
<td>ดร.ปราโมช</td>
<td>จุลพิพัฒน์</td>
<td>ศูนย์วิจัยเทคโนโลยีการก่อสร้างและบำรุงรักษา (CONTEC)</td>
</tr>
<tr>
<td>ดร.วิชัยพงษ์</td>
<td>สมศักดิ์ศรี</td>
<td>ศูนย์วิจัยเทคโนโลยีการก่อสร้างและบำรุงรักษา (CONTEC)</td>
</tr>
<tr>
<td>ดร.วิศวะกานต์</td>
<td>เลสสี่มีสุข</td>
<td>ศูนย์วิจัยเทคโนโลยีการก่อสร้างและบำรุงรักษา (CONTEC)</td>
</tr>
<tr>
<td>น.อ.ผศ.ดร.ธราวุทธ</td>
<td>ฐิติพันธุ์</td>
<td>โรงเรียนนายเรืออากาศ</td>
</tr>
<tr>
<td>ผศ.ดร.ทเรศกุล</td>
<td>แก้วกุลชัย</td>
<td>มหาวิทยาลัยอุบลราชธานี</td>
</tr>
<tr>
<td>ผศ.ดร.พิชัย</td>
<td>จารุวัฒน์</td>
<td>มหาวิทยาลัยศรีปทุม</td>
</tr>
<tr>
<td>ผศ.ดร.ภริยา</td>
<td>เลิศศิริพันธ์</td>
<td>มหาวิทยาลัยศรีปทุม</td>
</tr>
<tr>
<td>รศ.ว.ท.พ.ธ.อินทวุฒินันท์</td>
<td>ศิริวัฒน์สินี</td>
<td>มหาวิทยาลัยราชภัฎศรีนครินทร์</td>
</tr>
<tr>
<td>ดร.อินทวุฒินันท์</td>
<td>สิทธิพันธ์</td>
<td>มหาวิทยาลัยมหิดล</td>
</tr>
<tr>
<td>ผศ.ดร.ศรีรัตน์</td>
<td>สราวุฒิพันธ์</td>
<td>มหาวิทยาลัยบูรพา</td>
</tr>
<tr>
<td>ผศ.ดร.พิชัย</td>
<td>ชาลิ</td>
<td>มหาวิทยาลัยบูรพา</td>
</tr>
<tr>
<td>ดร.วัชระ</td>
<td>ปิยะกิจพันธ์</td>
<td>มหาวิทยาลัยระเบียงเมืองเคียนส์</td>
</tr>
<tr>
<td>ผศ.ดร.สิทธิ์</td>
<td>แสงอาทิตย์</td>
<td>มหาวิทยาลัยระเบียงเมืองเคียนส์</td>
</tr>
<tr>
<td>ดร.รัชวัฒน์</td>
<td>ลำปะวัน</td>
<td>มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ</td>
</tr>
<tr>
<td>ดร.รัชเว</td>
<td>ลำปะวัน</td>
<td>มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ</td>
</tr>
<tr>
<td>ผศ.ดร.พิชญ์</td>
<td>กิจโยธา</td>
<td>มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ</td>
</tr>
<tr>
<td>รศ.อุดมศรี</td>
<td>เจริญฤทธิ์</td>
<td>มหาวิทยาลัยเทคโนโลยีราชมงคลวิศวกรรมศาสตร์</td>
</tr>
<tr>
<td>ดร.สมชาย</td>
<td>ทองยุทธภูมิ</td>
<td>มหาวิทยาลัยเทคโนโลยีราชมงคลสังคม (ตาก)</td>
</tr>
<tr>
<td>ผศ.ดร.ญาณวิทย์</td>
<td>ไชยศุภสิทธิ์</td>
<td>มหาวิทยาลัยเทคโนโลยีราชมงคลรัตนโกสินทร์</td>
</tr>
<tr>
<td>ดร.จุฬาภรณ์</td>
<td>ตั้งประภัติ</td>
<td>มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี</td>
</tr>
<tr>
<td>ผศ.ดร.ปิยานันท์</td>
<td>ภราดา</td>
<td>มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี</td>
</tr>
<tr>
<td>ดร.นริศร์</td>
<td>กมลรัตน์</td>
<td>มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ</td>
</tr>
<tr>
<td>ผศ.ดร.กิตติภูมิ</td>
<td>รอดิบงก</td>
<td>มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ</td>
</tr>
<tr>
<td>รศ.ดร.ปิย์</td>
<td>สุนทรศรีกุล</td>
<td>มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ</td>
</tr>
<tr>
<td>รศ.ดร.สมชัย</td>
<td>สัตบุรีปีก</td>
<td>มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ</td>
</tr>
<tr>
<td>รศ.ดร.ปิยานันท์</td>
<td>ตั้งประภัติ</td>
<td>มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ</td>
</tr>
<tr>
<td>รศ.ดร.ปัญญา</td>
<td>ศิริพันธ์</td>
<td>มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ</td>
</tr>
<tr>
<td>รศ.ดร.ศิวะ</td>
<td>จารุพิชัยกุล</td>
<td>มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ</td>
</tr>
<tr>
<td>รศ.ดร.บุญเพ็ญ</td>
<td>นัทธวัชระ</td>
<td>มหาวิทยาลัยเทคโนโลยีธรรมศาสตร์</td>
</tr>
<tr>
<td>ผศ.ดร.วัชระ</td>
<td>สมใจ</td>
<td>มหาวิทยาลัยขอนแก่น</td>
</tr>
</tbody>
</table>
คณะกรรมการผู้พิจารณาบทความ การประชุมวิชาการด้านวิศวกรรมประจําปี ครั้งที่ 10 (ต่อ)

<table>
<thead>
<tr>
<th>ดร.นิธิณทัศนากร</th>
<th>ชมหวาน</th>
<th>มหาวิทยาลัยเกษตรศาสตร์</th>
</tr>
</thead>
<tbody>
<tr>
<td>ผศ.ดร.จิตร์นภัสสร</td>
<td>ภัตติยะ</td>
<td>มหาวิทยาลัยเกษตรศาสตร์</td>
</tr>
<tr>
<td>ผศ.ดร.วิชิตย์</td>
<td>ยอแสงฤทธิ์</td>
<td>มหาวิทยาลัยเกษตรศาสตร์</td>
</tr>
<tr>
<td>รศ.ดร.สุริยา</td>
<td>สังวาลย์นิยม</td>
<td>มหาวิทยาลัยเกษตรศาสตร์</td>
</tr>
<tr>
<td>คุณธนพรทิพย์</td>
<td>เจริญฤทธิ์</td>
<td>มหาวิทยาลัยเกษตรศาสตร์</td>
</tr>
<tr>
<td>ผศ.ดร.วิศิษฐ์</td>
<td>ปานสุช</td>
<td>มหาวิทยาลัยเกษตรศาสตร์</td>
</tr>
</tbody>
</table>

บัณฑิตวิทยาลัย เอ็นจีนิวอินโค คอมไฟลด์เนส จำากัด

จุฬาลงกรณ์มหาวิทยาลัย
08.30–10.15 น. การนำเสนอบทความวิจัย (ห้องดอยดุง 1)

ประธานผู้จัด: ผศ.ดร.ปิติศานต์ กรรมา enumerable
รองประธานผู้จัด: ดร.วรวงศ์ แสงสุรีย์

MAT-17	การศึกษาคุณสมบัติทางกายภาพและคุณสมบัติทางกลของคอนกรีตผสมเมล็ดพุทรา
MAT-18	การประยุกต์ใช้ดินตะกอนแทรกเปลี่ยนเมล็ดในคอนกรีตเพื่อเพิ่มกำลังอัด
MAT-31	การศึกษาสมบัติของอิสระจากอ้อยเพื่อใช้เป็นช่องก้าวรดนิ่งนำคอนกรีต
MAT-48	Internal curing with lightweight aggregate produced from biomass-derived waste
MAT-51	พฤติกรรมของกลไกภายในระหว่างเส้นเจ้าดินเมล็ดแบบบันทัศนาและชนิดเห็นว้อยอน
MAT-63	การผลิตคอนกรีตภายนอกแบบหลุมแบบบัดความด้าน
REP-02	ผลกระทบของข้อมูลพื้นที่ส่งผลต่อพฤติกรรมของคอนกรีตที่ได้รับการอบCxด้วย CFRP

08.30–10.15 น. การนำเสนอบทความวิจัย (ห้องดอยดุง 2)

ประธานผู้จัด: น.อ.รศ.ดร.ชวนรา พรพงษ์ชัย
รองประธานผู้จัด: ดร.รัฐวิทย์ สุทธิธรรม

<p>| ENV-06 | ผลของความเข้มข้นของสารละลายโซเดียมไนเตรตต่อขีดข้นโฟลิเออร์วิทยา |
| ENV-07 | ผลของความเข้มข้นต่าง ๆ และอุณหภูมิในการเปรียบเทียบการพัฒนาการกล่อมดินของขี้ฟองฟลอก|
| MAT-14 | ผลกระทบของอัตราการสลายโครงสร้างกลัวการที่จะเกิดและการหดตัวของอิสระครื้|
| MAT-24 | ผลกระทบของอัตราการสลายโครงสร้างกลัวการที่จะเกิดและการหดตัวของอิสระครื้|
| MAT-43 | ปัจจัยของสารละลายต่างต่อการพัฒนาการกล่อมดินของขี้ฟองฟลอก|
| MAT-34 | คอนกรีตบล็อกผสมปลอมก้อนทองแดง |
| REP-05 | การประยุกต์ใช้หลักการกล่อมเพื่อช่วยเหลือผู้ประสบภัยพิบัติ จากเหตุภัยพิบัติ|</p>
<table>
<thead>
<tr>
<th>รหัส</th>
<th>หัวข้อ</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT-16</td>
<td>คุณสมบัติทางความร้อนของจิวอยสำเร็จรุ่นก็รีวลมเบลที่ผสมสีเขียวเดิมหลอกมวลเบา</td>
<td>MAT-92</td>
</tr>
<tr>
<td>MAT-17</td>
<td>การศึกษาคุณสมบัติทางกายภาพ และคุณสมบัติทางกลของคอนกรีตผสมเมล็ดพุทรา</td>
<td>MAT-99</td>
</tr>
<tr>
<td>MAT-18</td>
<td>การประยุกต์ใช้ช่างท่อปูชิมเมล็ดในคอนกรีตเพื่อเพิ่มกำลังดัด</td>
<td>MAT-107</td>
</tr>
<tr>
<td>MAT-21</td>
<td>กาลังดัดและความชันเหลวของคอนกรีตดัดผสมเมล็ดแก๊สและกันน้ำรับมุมใหม่</td>
<td>MAT-113</td>
</tr>
<tr>
<td>MAT-22</td>
<td>พฤติกรรมการรับแรงดันของดินถุงผสมเมล็ดพุทราคัดความสัมประสิทธิ์ที่อักกลมไประดับใหม่</td>
<td>MAT-120</td>
</tr>
<tr>
<td>MAT-23</td>
<td>ต้นทุนคุณสมบัติและพฤติกรรมการถูดตัวของดินถุงย่างรับปรุงด้วยชิมเมล็ดไฟในเมล็ด</td>
<td>MAT-127</td>
</tr>
<tr>
<td>MAT-24</td>
<td>ผลกระทบของขนาดมวลรวมหยาบในส่วนผสมคอนกรีตต่อความรับแรงดันพื้นผิว</td>
<td>MAT-134</td>
</tr>
<tr>
<td>MAT-25</td>
<td>การศึกษาสมบัติของเมอร์ควอตแลมผสมเมล็ดอุลตร้า</td>
<td>MAT-141</td>
</tr>
<tr>
<td>MAT-26</td>
<td>คอนกรีตแปลงแบบด้ายด้วยที่ใช้ก้านแลเชิญการรับตอผสมแล้วยันเป็นวัสดุประสาน</td>
<td>MAT-147</td>
</tr>
<tr>
<td>MAT-27</td>
<td>กาลังดัด การดันทรายคั่นไปต่างและการถูดของเมอร์ควอตแลมที่ใช้ก้านแลเชิญการรับต่อผสมแล้วยันเป็นวัสดุประสานที่มีการพื้นผิวกาลังดัดด้วยวัสดุต่างๆ</td>
<td>MAT-158</td>
</tr>
<tr>
<td>MAT-28</td>
<td>กาลังดัดและความดันทรายคั่นของคอนกรีตที่ทนที่ปูชิมเมล็ดด้วยเก็บหยาบอ่อนในบริเวณเก็บหยาบ</td>
<td>MAT-165</td>
</tr>
<tr>
<td>MAT-29</td>
<td>การกระทบกระเทือนของคั่นไปต่างและโครงสร้างจุลภาคของดินถุงผสมเมล็ดพุทราปลอมน้ำมัน</td>
<td>MAT-173</td>
</tr>
<tr>
<td>MAT-31</td>
<td>การศึกษาสมบัติของเก็บชานอ่อนเพื่อใช้เป็นช้อกกำลังไปในงานคอนกรีต</td>
<td>MAT-181</td>
</tr>
<tr>
<td>MAT-32</td>
<td>การพื้นผิวหน้ารับคั่นไปต่างของกะเก็บพื้นผิวไปดีคอมโพสิต</td>
<td>MAT-188</td>
</tr>
<tr>
<td>MAT-34</td>
<td>คอนกรีตสีสัมผัสเป็นโลหะครอบครอง</td>
<td>MAT-196</td>
</tr>
<tr>
<td>MAT-35</td>
<td>Effect of Synthetic Zeolite on an ASR Expansion and Compressive Strength</td>
<td>MAT-204</td>
</tr>
<tr>
<td>MAT-37</td>
<td>ประสิทธิภาพทางคุณสมบัติของเมอร์ควอตผสมเมล็ดไฟใน</td>
<td>MAT-210</td>
</tr>
<tr>
<td>MAT-40</td>
<td>การควบคุมการขยายตัวขั้นบัญชี ASR ในเมอร์ควอตโดยการแทนที่ปูชิมเมล็ดด้วยเก็บชอน</td>
<td>MAT-217</td>
</tr>
<tr>
<td>MAT-41</td>
<td>ความดันทรายคั่นไปต่างของคอนกรีตผสมเมล็ดพุทรา</td>
<td>MAT-223</td>
</tr>
<tr>
<td>MAT-43</td>
<td>ปัจจัยของสารเคมีทางด้านต่อการบังคับเร่งดัดและไม่ติดตัวที่ต่อของชิมเมล็ดพุทรา</td>
<td>MAT-230</td>
</tr>
<tr>
<td>MAT-44</td>
<td>พฤติกรรมการรับแรงดันของแผนที่คั่นผิวผสมเมล็ดพุทรา</td>
<td>MAT-239</td>
</tr>
<tr>
<td>MAT-46</td>
<td>การศึกษาความดันทรายแรงดันของแผนที่คั่นผิวผสมเมล็ดพุทรา</td>
<td>MAT-246</td>
</tr>
</tbody>
</table>

*หมายเหตุ: รหัส MAT ต่อไปนี้ถูกจัดงวดตามหัวข้อเรียงลำดับตามที่มีตัวอักษรตัวหน้าตัวหลังที่มีตัวอักษรตัวหน้าตัวหลังของหัวข้อเรียงลำดับตามลำดับที่มีตัวอักษรตัวหน้าตัวหลังที่มีตัวอักษรตัวหน้าตัวหลังของหัวข้อเรียงลำดับตามลำดับที่มีตัวอักษรตัวหน้าตัวหลังของหัวข้อเรียงلام
ปัจจัยของสารละลายต่างค่ากำลังแรงตัวและโมดูลัสยืดหยุ่นของจีโอโพลีเมอร์มอเตอร์
แทนที่ด้วยปูนซีเมนต์Portland

สกาวรรณ หานจิตรสุวรรณ (Sakonwan Hanjitsuwan)1
ธนากร ภูเนินกม (Tanakorn Phoo-ngernkham)2

1 อธิการ สาขาวิชาเทคโนโลยีโยธา คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏลำปาง Email: yim_kachan@yahoo.com
2 อธิการ สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์และสถาปัตยกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตนครราชสีมา Email: tpcivil2526@gmail.com

บทคัดย่อ: บทความนี้เป็นการศึกษาปัจจัยของสารละลายต่างค่ากำลังแรงตัวและโมดูลัสยืดหยุ่นของจีโอโพลีเมอร์มอเตอร์จากเถ้าลอยแคลเซียมสูงที่มีการแทนที่ด้วยปูนซีเมนต์Portland ด้วยอัตราชุมนสูงเท่ากับร้อยละ 0, 5, 10, 15 และ 20 โดยนำแนวคิดทวีปุระสาร สารละลายต่างค่าที่ใช้เป็นของเหลวประกอบ โดยสารละลายโซเดียมไฮドラอกไซด์ 10 มอราเลที่เป็นของเหลวอ่อน (NH) สสารละลายโซเดียมไฮ والاออกไซด์และสารละลายโซเดียมซิลิเกตผสมกัน (NHWG) และสารละลายโซเดียมซิลิเกตเพียงอย่างเดียว (WG) โดยทำการทดสอบค่ากำลังแรงตัวและโมดูลัสยืดหยุ่นของจีโอโพลีเมอร์มอเตอร์ที่มีการแทนที่ปูนซีเมนต์Portland ค่าสัมพันธ์: เคลือบซิลิเกต, สารละลายต่าง, กำลังแรงตัว, โมดูลัสยืดหยุ่น

ABSTRACT: This article investigated the factors of alkali activated solutions on compressive strength and modulus of elasticity of high calcium fly ash (FA) geopolymer containing Portland cement type I (PC). The FA was replaced with PC at the dosages of 0%, 5%, 10%, 15% and 20% by weight of binder. The alkali activated solution of 10 molar of sodium hydroxide only (NH), 10 molar of sodium hydroxide and sodium silicate solution (NHWG), and sodium silicate solution only (WG) were used as the liquid portion in the mixture. The compressive strength and modulus of elasticity of geopolymer mortar were studied. The test results indicated that the use of PC to replace of FA could enhance the compressive strength and modulus of elasticity of geopolymer mortar. The alkali activators were significantly affected to the reaction products of geopolymer matrix. The use of NHWG as alkali solution showed a highest compressive strength of FA geopolymer mortar containing PC.

KEYWORDS: high calcium geopolymer, alkali activated solution, compressive strength, modulus of elasticity.
1. บทนำ

ขอให้เห็นว่าสารละลายดูตอวัสดุจีโอโพลิเมอร์อย่างมีนัยสำคัญในปัจจุบันสารละลายดูตอเป็นสารละลายที่มีอยู่ในการผลิตจีโอโพลิเมอร์ ซึ่งสารละลายดูตอเป็นอนุกรมของซิลิกาและอะลูมินาที่ควบแนวนิสัยปฏิกิริยาจีโอโพลิเมอริเซชั่น [10] ดังนั้นในงานวิจัยนี้จึงมีจุดประสงค์เพื่อศึกษาปัจจัยที่เกี่ยวข้องกับผลผลิตของจีโอโพลิเมอร์และโมดูลัสยืดหยุ่นของจีโอโพลิเมอร์
ปูนซีเมนต์ปรกและแคลเซียมสูงเป็นข้อมูลเบื้องต้นในการพัฒนาจีโอโพลิเมอร์เป็นวัสดุเชิงแฝงในอนาคต

2. การเตรียมวัสดุและการทดลอง

2.1 วัสดุที่ใช้ในการวิจัย

วัสดุตั้งต้นที่ใช้ในการผลิตจีโอโพลิเมอร์ด้าร์ประกอบด้วย ปูนซีเมนต์ ประเภทที่ 1 (PC) และทราย (RS) โดยที่องค์ประกอบทางเคมีและสมบัติทางกายภาพของวัสดุตั้งต้นแสดงในตารางที่ 1 และ 2

ตารางที่ 1 องค์ประกอบทางเคมีของ FA และ PC

<table>
<thead>
<tr>
<th>Chemical compositions</th>
<th>FA (%)</th>
<th>PC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>29.32</td>
<td>20.80</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>12.96</td>
<td>4.70</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>15.64</td>
<td>3.40</td>
</tr>
<tr>
<td>CaO</td>
<td>25.79</td>
<td>65.30</td>
</tr>
<tr>
<td>MgO</td>
<td>2.94</td>
<td>1.50</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>2.94</td>
<td>0.40</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>2.93</td>
<td>0.10</td>
</tr>
<tr>
<td>SO$_3$</td>
<td>7.29</td>
<td>2.70</td>
</tr>
<tr>
<td>LOI</td>
<td>0.30</td>
<td>0.90</td>
</tr>
<tr>
<td>SiO$_2$ + Al$_2$O$_3$ + Fe$_2$O$_3$</td>
<td>57.92</td>
<td>-</td>
</tr>
</tbody>
</table>

ตารางที่ 2 สมบัติทางกายภาพของ FA, PC และ Sand

<table>
<thead>
<tr>
<th>Specific gravity/Materials</th>
<th>FA</th>
<th>PC</th>
<th>Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity</td>
<td>2.61</td>
<td>3.16</td>
<td>2.63</td>
</tr>
<tr>
<td>Median Particle Size, d_{50} (μm)</td>
<td>8.5</td>
<td>14.6</td>
<td>-</td>
</tr>
<tr>
<td>Blaine fineness (cm2/g)</td>
<td>4300</td>
<td>3600</td>
<td>-</td>
</tr>
<tr>
<td>Fineness modulus</td>
<td>-</td>
<td>-</td>
<td>1.80</td>
</tr>
</tbody>
</table>

สารละลายที่ใช้ในการผลิตจีโอโพลิเมอร์ประกอบด้วยสารละลายโซเดียมไฮดรอกไซด์ (NH) ที่ความเข้มข้น 10 โมลาร์ และสารละลายโซเดียมซิลิกา (WG) (13.89% Na$_2$O, 32.15% SiO$_2$ และ 46.04% H$_2$O)

2.2 การเตรียมตัวอย่างจีโอโพลิเมอร์ด้าร์

อัตราส่วนผสมตัวอย่างจีโอโพลิเมอร์ด้าร์ประกอบด้วยในตารางที่ 3 เบื้องต้นจากออกแบบที่มีอยู่ในข้อมูลในนี้การผสมจีโอโพลิเมอร์ด้าร์ใช้อัตราส่วนของเหลวต่อวัสดุประคบ (L/B) อัตราส่วนสารละลายโซเดียมซิลิกาต่อสารละลายโซเดียมไฮดรอกไซด์ (WG/NH) และอัตราส่วนทรายต่อวัสดุประคบเท่ากับ 0.60, 2.0 และ 1.0 ตามลำดับ

ตารางที่ 3 อัตราส่วนผสมของจีโอโพลิเมอร์ด้าร์

<table>
<thead>
<tr>
<th>Symbol</th>
<th>FA (g)</th>
<th>PC (g)</th>
<th>RS (g)</th>
<th>NH (g)</th>
<th>WG (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA0PC_NH</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>FA5PC_NH</td>
<td>95</td>
<td>5</td>
<td>100</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>FA10PC_NH</td>
<td>90</td>
<td>10</td>
<td>100</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>FA15PC_NH</td>
<td>85</td>
<td>15</td>
<td>100</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>FA20PC_NH</td>
<td>80</td>
<td>20</td>
<td>100</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>FA0PC_NHWG</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>FA5PC_NHWG</td>
<td>95</td>
<td>5</td>
<td>100</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>FA10PC_NHWG</td>
<td>90</td>
<td>10</td>
<td>100</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>FA15PC_NHWG</td>
<td>85</td>
<td>15</td>
<td>100</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>FA20PC_NHWG</td>
<td>80</td>
<td>20</td>
<td>100</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>FA0PC_WG</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>FA5PC_WG</td>
<td>95</td>
<td>5</td>
<td>100</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>FA10PC_WG</td>
<td>90</td>
<td>10</td>
<td>100</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>FA15PC_WG</td>
<td>85</td>
<td>15</td>
<td>100</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>FA20PC_WG</td>
<td>80</td>
<td>20</td>
<td>100</td>
<td>-</td>
<td>60</td>
</tr>
</tbody>
</table>
การผสมจีโอโพลิเมอร์ด้วยเริ่มต้นด้วยผสมเจลโดยปูนซีเมนต์ poket และทำให้ขัดกันเป็นเวลาประมาณ 1 นาที จากนั้นเติมสารละลายแล้วผสมเป็นเวลาประมาณ 5 นาที แล้วทำการทดสอบการตากเมื่อการผสมจีโอโพลิเมอร์เจลและใช้เจลโดยใช้เครื่องชิลเลอร์และใช้เจลโดยใช้เครื่องชิลเลอร์ให้ขัดกันนำไปใช้เป็นของผสมในส่วนผสม.

2.3 การทดสอบก๊าซเร็บร้อนจีโอโพลิเมอร์ด้วย

หลังจากกระบวนการผสมเสร็จแล้ว ทำการผสมแบบขนาด 50x50x50 mm ตามมาตรฐาน ASTM C109 [11] แล้วทำการทดสอบฟิล์มพลาสติกเพื่อป้องกันการสูญเสียความชื้นของตัวอย่าง และเก็บไว้ที่ห้องควบคุมอุณหภูมิที่ 25 องศาเซลเซียส และยอดด้วยเมื่อครั้ง 24 ชั่วโมง หลังจากการทดสอบต่อไปยังทดสอบ หลังทำการทดสอบฟิล์มพลาสติกเพื่อป้องกันการสูญเสียความชื้นอีกครั้ง และเก็บไว้ที่ห้องควบคุมอุณหภูมิที่ 25 องศาเซลเซียส ขณะถือว่าการทดสอบด้วยผลต่อที่อายุการบูรณาการเท่ากับ 28 วัน โดยทำการทดสอบใช้จุดเมื่อจากกระบวนการ 3 ตัวอย่าง

2.4 การทดสอบจีโอโพลิเมอร์ด้วยเริ่มต้นด้วยการควบคุม

การทดสอบจีโอโพลิเมอร์ด้วยเริ่มต้นด้วยการควบคุมมาตรฐาน ASTM C469 [12] โดยใช้จุดเมื่อแบบทดสอบขนาด 25x50mm และทำการวัดความเครื่องดูดของตัวอย่างใช้strain gage โดยปิดกันแล้วทำการทดสอบจีโอโพลิเมอร์ที่มีวัสดุต่ำสุดขนาด 100x200mm หรือ 150x300mm ออกจากการวิจัยของ Khandelwal et al. [13] ได้ให้การทดลองจีโอโพลิเมอร์ด้วยใช้แบบทดสอบขนาด 50x100mm ซึ่งจากการทดสอบแสดงให้เห็นว่าผลจีโอโพลิเมอร์ที่ได้รับมีความคลาดเคลื่อนแต่เป็นที่ยอมรับได้ ดังนั้นในการศึกษาระบบการวัสดุจีโอโพลิเมอร์เพื่อค้นหาในเบื้องต้นของการทดสอบจีโอโพลิเมอร์ที่มีวัสดุต่ำและวัสดุเจลที่ดีจึงได้ดำเนินการทดสอบแบบทดสอบขนาด 25x50 mm สำหรับการเตรียมตัวอย่างนั้นหลังจากกระบวนการผสมเสร็จแล้ว ทำการผสมหล่อแล้วทำการทดสอบฟิล์มพลาสติกเพื่อป้องกันการสูญเสียความชื้นชั่วคราว และเก็บไว้ที่ห้องควบคุมอุณหภูมิที่ 25 องศาเซลเซียส และยอดด้วยเมื่อครั้ง 24 ชั่วโมงหลังจากกระบวนการผสมเป็นครั้งที่ 2 หลังจากการทดสอบแบบหล่อแล้วทำให้เกิดการสูญเสียความชื้นอีกครั้งและเก็บตัวอย่างไว้ที่ห้องควบคุมอุณหภูมิที่ 25 องศาเซลเซียส จนครบอายุการทดสอบได้ 28 วัน โดยทำการทดสอบใช้จุดเมื่อจากกระบวนการ 3 ตัวอย่าง

3. ผลการทดสอบและวิเคราะห์ผล

3.1 กำลังรับแรงอัดของจีโอโพลิเมอร์ด้วยเริ่มต้นด้วยการทดสอบนั้นได้ดังนี้

กำลังรับแรงอัดของจีโอโพลิเมอร์ด้วยเริ่มต้นด้วยการทดสอบ 28 วัน ดังนั้นในตารางที่ 4 พบว่ากรณีที่ใช้สารละลายจีโอโพลิเมอร์ เพียงชนิดเดียวในการเกิดปฏิกิริยาเป็นจีโอโพลิเมอร์ กำลังรับแรงอัดของจีโอโพลิเมอร์ด้วยได้คำนนับจำาเต้นความจุยด้วยปริมาณการแทนที่ปูนซีเมนต์ของแผนที่

ส่วนกรณีที่ใช้สารละลายจีโอโพลิเมอร์หน่วยละจีโอโพลิเมอร์ที่มีส่วนผสมกับสารละลายจีโอโพลิเมอร์ชิลเลอร์ในการเกิดปฏิกิริยาเป็นจีโอโพลิเมอร์ กำลังรับแรงอัดของจีโอโพลิเมอร์ด้วยมีแนวโน้มเพิ่มขึ้นตามปริมาณการแทนที่ปูนซีเมนต์-ปูนผสมที่เพิ่มขึ้นและยิ่งใหญ่ในค่าการแทนที่ปูนซีเมนต์-ปูนผสมที่เพิ่มขึ้นแต่ยังไม่ได้กับปริมาณการแทนที่ปูนซีเมนต์-ปูนผสมที่เพิ่มขึ้นเพียง 20
อาจเนื่องจากเกิดการผ่านปฏิกิริยาที่รวดเร็วทำให้จีโอโพลิเมอร์ตัวแข็งตัวอย่างทันที โดยที่การเพิ่มสูงของปริมาณปูนซีเมนต์โปรตแอลก่าทำให้ปริมาณเหลลอมของเม็ดปูนซีเมนต์เหลลอมทำให้จีโอโพลิเมอร์แข็งตัวอย่างทันทีทันใด ดังนั้นการทำปฏิกิริยาทันที Hiệnในปฏิกิริยาที่รวดเร็วทำให้มีการเพิ่มขึ้นของปริมาณปูนซีเมนต์โปรตแอลก่าในปริมาณแคลเซียมไอออนที่เพิ่มขึ้นทำให้จีโอโพลิเมอร์เจลสามารถจับตัวกันและแข็งตัวได้เร็วขึ้น [6] โดยการที่เกิดการผ่านปฏิกิริยาแบบรวดเร็วส่งผลเสียต่องานสมบูรณ์ของการทำปฏิกิริยาจีโอโพลิเมอร์เช่น

ตารางที่ 4 ค่าลัทธิองค์ของจีโอโพลิเมอร์ตัวแข็ง

<table>
<thead>
<tr>
<th>Mixes/Alkali solutions</th>
<th>Compressive strength at 28 days (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA0PC</td>
<td>5.42 38.62 26.08</td>
</tr>
<tr>
<td>FA5PC</td>
<td>6.10 44.17 33.08</td>
</tr>
<tr>
<td>FA10PC</td>
<td>6.25 50.52 38.87</td>
</tr>
<tr>
<td>FA15PC</td>
<td>6.12 54.05 40.34</td>
</tr>
<tr>
<td>FA20PC</td>
<td>6.80 48.58 15.89</td>
</tr>
</tbody>
</table>

ส่วนกรณีใช้สารละลายโซเดียมซิลิเกตเพียงชนิดเดียวในการเกิดปฏิกิริยาเป็นจีโอโพลิเมอร์ ค่าลัทธิองค์แรงของจีโอโพลิเมอร์ตัวแข็งมีแนวโน้มเพิ่มขึ้นตามปริมาณการแทนที่ปูนซีเมนต์-โปรตแอลก่าที่เพิ่มขึ้น แต่ค่าลัทธิองค์แรงของจีโอโพลิเมอร์ตัวแข็งมีแนวโน้มลดลงที่การแทนที่ปูนซีเมนต์-โปรตแอลก่ายüz % ในทำนองเดียวกันกับการกระทำจีโอโพลิเมอร์กับสารละลายโซเดียมซิลิเกตในกรณีเรียบง่ายจะเห็นว่ามี tüลักษณะเหนียวและหนืดทำให้ส่วนผสมของจีโอโพลิเมอร์ตัวแข็งไม่สามารถเป็นเนื้อเดียวกัน [5] ในทางตรงข้ามกับการใช้สารละลายโซเดียมซิลิเกตในการเกิดปฏิกิริยาของจีโอโพลิเมอร์ตัวแข็ง ทำให้การใช้สารละลายโซเดียมซิลิเกตในกรณีเจลหี่คิดเป็นจีโอโพลิเมอร์ตัวแข็ง

ตารางที่ 5 ค่าโมดูลัสยืดหยุ่นของจีโอโพลิเมอร์ตัวแข็ง

<table>
<thead>
<tr>
<th>Mixes/Alkali solutions</th>
<th>Modulus of elasticity at 28 days (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA0PC</td>
<td>0.98 6.73 4.55</td>
</tr>
<tr>
<td>FA5PC</td>
<td>1.32 8.19 4.94</td>
</tr>
<tr>
<td>FA10PC</td>
<td>1.99 14.54 8.61</td>
</tr>
<tr>
<td>FA15PC</td>
<td>2.24 16.68 8.90</td>
</tr>
<tr>
<td>FA20PC</td>
<td>2.26 10.87 3.11</td>
</tr>
</tbody>
</table>

ส่วนกรณีสารละลายโซเดียมไฮดรอกไซด์ผสมกับสารละลายโซเดียมซิลิเกตในการเกิดปฏิกิริยาเป็นจีโอโพลิเมอร์ ค่าโมดูลัสยืดหยุ่นของจีโอโพลิเมอร์ตัวแข็ง
มีแนวโน้มเพิ่มขึ้นตามปริมาณการแทนที่ปูนซีเมนต์-ปอร์ตแลนด์ในเถ้าลอยที่เพิ่มขึ้นซึ่งการที่ไม่สูญเสียหนุน
มีแนวโน้มเพิ่มขึ้นตามปริมาณการแทนที่ปูนซีเมนต์-ปอร์ตแลนด์ที่เพิ่มขึ้นอย่างชัดเจนในเอกสารที่เกี่ยวข้อง
ที่ผ่านมา [9] และมีลักษณะคล้ายกับการสูญเสียหนุนของ
ซีเมนต์ก่อด้วยวิธีระหว่าง 19-25 GPa (ค่าล่างกว่า
แรงดันระหว่าง 51.6-75.6 MPa) [14] การเพิ่มขึ้นของ
ในสูญเสียหนุนอาจเนื่องจากการเพิ่มขึ้นของแต่ละชิ้น
ไอโอดีนปูนซีเมนต์ปอร์ตแลนด์ข้อข่ายเพิ่มปริมาณของ
แลกซ่วนซีเมนต์-ปอร์ตแลนด์และสูญเสียหนุนอยู่ใน-
ซีเมนต์-ปอร์ตแลนด์ในระบบจีโอโพลิเมอร์ และทำให้นั้น
เป็นปรากฏจากข้อมลักษณะ ด้านหนึ่งจีโอโพลิเมอร์ด้วยจึงมี
ความหมายมากขึ้น [9] เนื่องจากเกิดเมื่อพิจารณาจาก
ตารางที่ 5 พบว่ามีการเกิดสูญเสียหนุนในสูญเสีย-
ปอร์ตแลนด์ในเถ้าลอยร้อยละ 20 ต่อลิตรสตีดทุน
มีแนวโน้มลดลงที่ตระกูลการผลิตสูญเสีย
ก้านอ้างอิงถึงค่อนข้างมากกับการทดสอบ
การใช้งานซีเมนต์-ปอร์ตแลนด์เพิ่มขึ้น
ในสูญเสียหนุนที่แนวโน้มมีแนวโน้มเพิ่มขึ้น
ต่อสูญเสียที่กลับที่เพิ่มขึ้น
ก้านอ้างอิง

ขณะที่การใช้งาจจึงจีโอโพลิเมอร์ผงพื้นผิว
เพื่อการเกิดปฏิกิริยาเป็นจีโอโพลิเมอร์ ต่อลิตรสตีดทุน
ของซีเมนต์-ปอร์ตแลนด์หรือสูญเสียหนุนของต่อลิตร
ข้อมูลที่เกี่ยวข้องจึงมีแนวโน้มเพิ่มขึ้นตาม
ปริมาณการแทนที่ปูนซีเมนต์-ปอร์ตแลนด์ในเถ้าลอย
ที่เพิ่มขึ้น แต่ค่าสูญเสียหนุนของจีโอโพลิเมอร์
มีแนวโน้มลดลงที่ตระกูลการแทนที่ปูนซีเมนต์-ปอร์ตแลนด์
ร้อยละ 20 ทำงานต่อกับการใช้งานจีโอโพลิเมอร์
จีโอโพลิเมอร์ผงพื้นผิวข้อมูลสูญเสียหนุนจีโอโพลิเมอร์
ในการเกิดปฏิกิริยาเป็นจีโอโพลิเมอร์

เมื่อพิจารณาเมื่อปริมาณการใช้จีโอโพลิเมอร์ดังในการ
เกิดปฏิกิริยาเป็นจีโอโพลิเมอร์ พบว่าการใช้จีโอโพลิเมอร์
จีโอโพลิเมอร์ผงพื้นผิวข้อมูลจีโอโพลิเมอร์ใน
ในการเกิดปฏิกิริยาให้ค่าสูญเสียหนุนของจีโอ-
โพลิเมอร์ด้วยสูงสุด รองลงมาที่การใช้จีโอโพ-
ลิเมอร์ผงพื้นผิวข้อมูลจีโอโพลิเมอร์ด้วย
การใช้จีโอโพลิเมอร์ผงพื้นผิวข้อมูลจีโอโพลิเมอร์
ค่าสูญเสียหนุนของจีโอโพลิเมอร์ด้วยสูงสุด
ที่นั้นได้ผลจากการทดสอบก้านอ้างอิงสูงสุดของ
จีโอโพลิเมอร์ด้วย

3.3 ความสัมพันธ์ระหว่างความเค้นกับความเครียด

จากรูปที่ 1 ถึง 3 แสดงถึงความสัมพันธ์ระหว่างความ
เค้นกับความเครียดของจีโอโพลิเมอร์ด้วย พบว่า
การใช้ปูนซีเมนต์-ปอร์ตแลนด์แทนที่ในเถ้าลอยสามารถ
เพิ่มความเค้นกับจีโอพิลิเมอร์ด้วย และ
ความเครียดที่ถูกตัดสูงสุดของจีโอโพลิเมอร์ด้วย
มีแนวโน้มลดลงเมื่อปริมาณการแทนที่
ปูนซีเมนต์-ปอร์ตแลนด์ในเถ้าลอยโดยข้อมูล
และแผนที่ใช้งานจีโอโพลิเมอร์ผงพื้นผิว
จีโอโพลิเมอร์ผงพื้นผิวข้อมูลจีโอโพลิเมอร์
ในช่วงเริ่มต้นมีแนวโน้มเป็นแบบเชิงเส้นบนจุดที่
จีโอโพลิเมอร์ผงพื้นผิวข้อมูลสูงสุด
แต่ค่าความเครียดของจีโอโพลิเมอร์ด้วย
ในช่วงเริ่มต้นมีแนวโน้มเป็นแบบเชิงเส้นบนจุดที่
จีโอโพลิเมอร์ผงพื้นผิวข้อมูลสูงสุด

กรณีที่ใช้จีโอโพลิเมอร์ผงพื้นผิวข้อมูล
เพื่อการเกิดปฏิกิริยาเป็นจีโอโพลิเมอร์ พบว่า
ความสัมพันธ์ระหว่างความเค้นกับความเครียดของ
จีโอโพลิเมอร์ผงพื้นผิวข้อมูลสูงสุดอยู่ในช่วงระหว่าง
0.00245-0.00274 mm/mm สำหรับกรณีที่ใช้จีโอโพลิเมอร์
ผงพื้นผิวข้อมูลจีโอโพลิเมอร์

ในกรณีที่ใช้จีโอโพลิเมอร์ผงพื้นผิวข้อมูล
เพื่อการเกิดปฏิกิริยาเป็นจีโอโพลิเมอร์ พบว่า
ความสัมพันธ์ระหว่างความเค้นกับความเครียด
ของจีโอโพลิเมอร์ผงพื้นผิวข้อมูลสูงสุดอยู่ในช่วงระหว่าง
0.00245-0.00274 mm/mm สำหรับกรณีที่ใช้จีโอโพลิเมอร์
ผงพื้นผิวข้อมูลจีโอโพลิเมอร์

การประชุมวิชาการคอนกรีตประจำปี ครั้งที่ 10
กับความเครียดมีแนวโน้มไม่มีความชันเพิ่มขึ้นตามปริมาณการแทนที่ปูนซีเมนต์โดยมีค่าความเครียดของจีโอโพลิเมอร์เมื่อใช้สารละลายโซเดียมไฮดรอกไซด์เพียงชนิดเดียวและมีค่าความเครียดที่กำลังอัดสูงสุดอยู่ในช่วงระหว่าง 0.00309-0.00396 mm/mm ขณะที่กรณีใช้สารละลายโซเดียมซิลิเกตเพียงชนิดเดียวในการเกิดปฏิกิริยาเป็นจีโอโพลิเมอร์ ;;; รากราความสัมพันธ์ระหว่างความเคียงกับความเครียดมีแนวโน้มไม่มีความชันเพิ่มขึ้นตามปริมาณการแทนที่ปูนซีเมนต์ในเนื้อที่ผสมกับการใช้สารละลายโซเดียมไฮดรอกไซด์เพียงชนิดเดียว และการใช้สารละลายโซเดียมไฮดรอกไซด์ผสมกับสารละลายโซเดียมซิลิเกตมีค่าความเครียดที่กำลังอัดสูงสุดอยู่ในช่วงระหว่าง 0.00318-0.00387 mm/mm

รูปที่ 1 ความสัมพันธ์ระหว่างความเคียงและความเครียดของจีโอโพลิเมอร์มอร์ตาร์ เมื่อใช้สารละลายโซเดียม-ไฮดรอกไซด์เพียงอย่างเดียว

รูปที่ 2 ความสัมพันธ์ระหว่างความเคียงและความเครียดของจีโอโพลิเมอร์มอร์ตาร์ เมื่อใช้สารละลายโซเดียม-ไฮดรอกไซด์กับสารละลายโซเดียมซิลิเกต

รูปที่ 3 ความสัมพันธ์ระหว่างความเคียงและความเครียดของจีโอโพลิเมอร์มอร์ตาร์ เมื่อใช้สารละลายโซเดียม-ซิลิเกตเพียงอย่างเดียว

จากข้อมูลข้างต้นเมื่อพิจารณาปริมาณปูนซีเมนต์มอร์ต้าร์พบว่าความเคียงต่ำของจีโอโพลิเมอร์มอร์ต้าร์เพียงพอสำหรับงานสร้างแบบคอนกรีตที่มีแนวโน้มให้ผลิตภัณฑ์แช่ที่ได้รับการอนุมัติ ความเคียงต่ำที่กำลังอัดสูงสุดอยู่ในช่วงระหว่าง 0.003-0.004 mm/mm [14] แต่ยังอยู่ก่อการผูกตัวและการสูญเสียค่าความเคียงต่ำถึงสูงสุดของจีโอโพลิเมอร์มอร์ต้าร์ที่มี
การใช้สารละลายโซเดียมไฮดรอกไซด์เพียงชนิดเดียวพบว่าจะมีค่าที่ต่ำกว่าความเครียดอัดที่สูงที่สุดของซีเมนต์มอร์ต้าร์ ดังแสดงในรูปที่ 1. อาจเนื่องจากจีโอโพลิเมอร์ด้วยที่มีค่าที่สูงจากสารละลายโซเดียมไฮดรอกไซด์เพียงอย่างเดียวมีกำลังรับแรงอัดที่ต่ำ

4. สรุปผลการวิจัย
จีโอโพลิเมอร์มอร์ต้าร์จากจีโอโพลิเมอร์ที่มีการแทนที่ปูนซีเมนต์เปอร์เซ็นต์ร้อยละ 5-15 และเมื่อใช้สารละลายโซเดียมไฮดรอกไซด์กับสารละลายโซเดียมซิลิเกตทำให้สารละลายโซเดียมซิลิเกตที่มีกำลังรับแรงอัดที่ต่ำกว่าค่าที่ต่ำสุดของซีเมนต์มอร์ต้าร์ ดังแสดงในรูปที่ 1.

5. ผลิตภัณฑ์ประกาศ
งานวิจัยนี้ได้รับการสนับสนุนจากมหาวิทยาลัยราชภัฏลำปางภายใต้คณะเทคโนโลยีอุตสาหกรรม (001/2557) ผู้วิจัยขอขอบพระคุณสำนักงานวิจัยเทคโนโลยีฯ คณะวิศวกรรมศาสตร์และสถาปัตยกรรมศาสตร์ มหาวิทยาลัยขอนแก่น สำนักงานวิจัยและพัฒนาโครงสร้างมูลฐานอย่างยั่งยืน มหาวิทยาลัยขอนแก่น และสำนักวิทยาศาสตร์การผลิต วิทยาศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตนครราชสีมา ที่อนุเคราะห์วัสดุและเครื่องมือในการดำเนินงานวิจัย

เอกสารอ้างอิง

